Το ευτυχισμένο Βασίλειο του Γαλάζιου Πύργου είχε ένα πολύ καλό
βασιλιά
που
του
άρεσαν οι εξερευνήσεις. Ήθελε να μάθει τα πάντα για τη γύρω
περιοχή.
Έτσι διέταξε κάποιους ιππότες να πάνε να εξερευνήσουν τη γύρω περιοχή και να έρθουν να του
πουν
τι
ανακάλυψαν. Αυτοί όμως δεν επέστρεψαν. Τη δεύτερη μέρα ο Βασιλιάς έστειλε
τέσσερις
ιππότες περισσότερους από όσους έστειλε την πρώτη μέρα. Κάθε μέρα ο
Βασιλιάς
έστελνε τέσσερις ιππότες περισσότερους από την προηγούμενη μέρα. Δεκαεννέα ιππότες έφυγαν από το κάστρο την πέμπτη μέρα. Πόσους συνολικά ιππότες
έστειλε
ο
Βασιλιάς για να εξερευνήσουν τη γύρω περιοχή; (Κατ.34/Νο.794)
στις
8:19 μ.μ.
Σάββατο 20 Δεκεμβρίου 2014
Η Περίμετρος
0σχόλια
Αναρτήθηκε από -
Papaveri
Το ανωτέρω
άστρο, ή εξάγραμμα, ή άστρο του Δαβίδ, ΑΒΓΔΕΣΤ, κατασκευάστηκε από τις προεκτάσεις ενός κανονικού
εξαγώνου, αβγδεστ, (δείτε, κόκκινες γραμμές).
Εάν
η
περίμετρος του άστρου είναι
96cm, πόση είναι η περίμετρος του εξαγώνου; (Κατ.34/Νο.782)
Πηγή:θεματα ε' δημοτικου 2000 - 2009
Πηγή:θεματα ε' δημοτικου 2000 - 2009
Λύση
Λύση του Ε. Αλεξίου. Τα τρίγωνα αΑβ, βΒγ,...,στΣΤα (έξι τρίγωνα) είναι ίσα μεταξύ τους και ισόπλευρα. Αν α η πλευρά τους τότε η περίμετρος του άστρου είναι: Π(α)=6*2*α=12α [6(τρίγωνα)*2(πλευρές κάθε τριγώνου που είναι στην περίμετρο του άστρου) *α] άρα Π(α)=96 ---> 12α=96 ---> α=96/12 ---> α=8εκ. Η περίμετρος του κανονικού εξαγώνου είναι: Π(ε)=6α ---> Π(ε)=6*8 ---> Π(ε)=48εκ. Ή κατευθείαν: Π(ε)=(Π(α)*6α)/12α ---> Π(ε)=(96*6α)/12α ---> Π(ε)=(96*6)/12 ---> Π(ε)=96/2 --->Π(ε)=48εκ.
στις
11:26 μ.μ.
Σάββατο 13 Δεκεμβρίου 2014
Rebus No.235 (1,10,3,5)
5σχόλια
Αναρτήθηκε από -
Papaveri
στις
9:44 μ.μ.
Η Ισότητα
4σχόλια
Αναρτήθηκε από -
Papaveri
Λύση
Και τα δύο αποτελέσματα είναι σωστά. Εξαρτάται από το που θα τοποθετηθούν οι παρενθέσεις. 2+(2*2)=2+4=6 και (2+2)*2=4*2=8
στις
7:30 μ.μ.
Τετάρτη 10 Δεκεμβρίου 2014
Τα Χωνάκια
0σχόλια
Αναρτήθηκε από -
Papaveri
Τα χωνάκια σοκολάτας που
πουλήθηκαν σε ένα κατάστημα ήταν ένα παραπάνω από τον τριπλάσιο αριθμό από τα
χωνάκια βανίλια που πουλήθηκαν. Συνολικά το κατάστημα πούλησε 601
χωνάκια. Πόσα χωνάκια βανίλια πουλήθηκαν; (Κατ.34/Νο.775)
Πηγή:http://eisatopon.blogspot.gr/2012/12/blog-post_5019.html
Λύση
Πουλήθηκαν 150 χωνάκια βανίλιας. Έστω "α" τα χωνάκια σοκολάτας και "β" τα χωνάκια βανίλιας. Βάσει των δεδομένων της εκφώνησης του προβλήματος έχουμε δύο εξισώσεις με δύο αγνώστους. α+β=601 (1) α=3β+1 (2) Αντικαθιστούμε τη (2) στην (1) κι' έχουμε: α+β=601 --> 3β+1+β=601 --> 4β=601-1 --> 4β=400 --> β=600/4 --> β=150 (3) Αντικαθιστούμε τη (3) στη (2) κι' έχουμε: α=3β+1 --> α=[(3*150)+1] --> α=450+1 --> α=451 (4) Επαλήθευση: α+β=601 --> 451+150=601 ο.ε.δ.
στις
12:30 μ.μ.
Τετάρτη 3 Δεκεμβρίου 2014
Ο Αριθμός
2σχόλια
Αναρτήθηκε από -
Papaveri
Μία εφημερίδα έχει 48 σελίδες και αποτελείται από μεγάλα
φύλλα των 4 σελίδων, τοποθετημένα το ένα πάνω στο άλλο και διπλωμένα στο μέσο
τους. Η μία σελίδα, από τις 4, κάποιου φύλλου έχει τον αριθμό 16. Ποιον αριθμό έχει
η άλλη σελίδα στην ίδια όψη του φύλλου αυτού;
(Κατ.27/Νο.435)
Σχόλιο: Επειδή βλέπω ότι δεν το έλυσε κανένας ακόμα. Να βοηθήσω λίγο στη λύση του. Έχει κάποια σχέση με το σκεπτικό του Johann Carl Friedrich Gauss, τον Πρίγκιπα των μαθηματικών όπως τον αποκάλεσαν, όταν έλυσε ένα πρόβλημα που τους έβαλε ο δάσκαλός τους σε ηλικία 9 ετών. Ελπίζω να βοήθησα αρκετά.
(Κατ.27/Νο.435)
Σχόλιο: Επειδή βλέπω ότι δεν το έλυσε κανένας ακόμα. Να βοηθήσω λίγο στη λύση του. Έχει κάποια σχέση με το σκεπτικό του Johann Carl Friedrich Gauss, τον Πρίγκιπα των μαθηματικών όπως τον αποκάλεσαν, όταν έλυσε ένα πρόβλημα που τους έβαλε ο δάσκαλός τους σε ηλικία 9 ετών. Ελπίζω να βοήθησα αρκετά.
Λύση
Λύση του Ε. Αλεξίου. Μία παροιμία λέει: «Τον λύκο τον βλέπεις, ψάχνεις για ντορό.»* Εδώ ο "λύκος" είναι η εφημερίδα! Κοιτάζοντας όποιαδήποτε εφημερίδα βλέπουμε στην πρώτη σελίδα τον αριθμό 1 και στην τελευταία τον αριθμό 4, 8, 12, 4ν, όπου ν=1,2,3,... Στην δεύτερη σελίδα τον αριμθμό 2 και στην προτελευταία σελίδα τον αριθμό (4ν-1), μετά στην τρίτη σελίδα τον αριθμό 3 και στην προ-προτελευταία σελίδα τον αριθμό (4ν-2),... κ.ο.κ. Συνολικό άθροισμα: Σ(ο)= 1+4ν ---> Σ(ο)= 1+4*12 ---> Σ(ο)= 1+48 ---> Σ(ο)= 49 Στην περίπτωση μας: x+16= Σ(ο) ---> x+16 =48 ---> x=48-16 ---> x=33 ). Λύση του συντάκτη. Στην ίδια πλευρά (όψη) του φύλλου που βρίσκεται η σελίδα 16 βρίσκεται και η σελίδα 33. Η πρώτη και η τελευταία σελίδα της εφημερίδας είναι τυπωμένες στην ίδια όψη του ίδιου φύλλου. Για παράδειγμα, στο 1ο φύλλο στη μια όψη βρίσκονται οι σελίδες (1,48) και στην άλλη όψη του φύλλου βρίσκονται οι σελίδες (2,47) . Στο 2ο φύλλο βρίσκονται στη μια όψη οι σελίδες (3,46) και στην άλλη όψη του φύλλου βρίσκονται οι σελίδες (4,45) κ.ο.κ.ε. Βλέπουμε ότι το άθροισμα των σελίδων που βρίσκονται στην ίδια όψη κάθε φύλλου είναι 49. Ισχύει ότι: x+16=1+48 ---> x+16=49 49 ---> x=49 -16 ---> x=33
στις
10:29 μ.μ.
Δευτέρα 1 Δεκεμβρίου 2014
Ο Αριθμός
2σχόλια
Αναρτήθηκε από -
Papaveri
Λύση
Έστω «αβ» ο ζητούμενος διψήφιος αριθμός, ο οποίος παριστάνεται (10α+β). Βάσει των δεδομένων της εκφωνήσεως έχουμε: αβ =[(10α+β)/2 – 1] ---> 2αβ = 10α + β – 2*1 ---> 2αβ = 10α + β – 2 ---> 2αβ – 10α = β – 2 ---> 2α(β – 5) = β – 2 --->α = (β-2)/2*(β-5)(1) Διερεύνηση: Δίνοντας στο "β" τις τιμές από το 1 έως το 9, βλέπουμε ότι οι μοναδικές τιμές που δίνουν ακέραιο "α" είναι οι αριθμοί 6 και 8. Αντικαθιστούμε τις τιμές του "β" στην (1) κι’ έχουμε: α)α = (β-2)/2*(β-5) ---> α = (6-2)/2*(6-5) ---> α = 4/2*1 ---> α = 4/2 ---> α = 2 β)α = (β-2)/2*(β-5) ---> α = (8-2)/2*(8-5) ---> α = 6/2*3 ---> α = 6/6 ---> α = 1 Άρα οι ζητούμενοι αριθμοί είναι οι 18 και 26. Επαλήθευση: α)αβ =[(10α+β)/2 – 1] ---> 2*6=[[(10*2)+6]/2-1] ---> 12=[(20+6)/2-1] ---> 12=[(26/2)-1] ---> 12=13-1 β)αβ =[(10α+β)/2 – 1] ---> 1*8=[[(10*1)+8]/2-1] ---> 8=[(10+8)/2-1] ---> 8=[(18/2)-1] ---> 8=9-1 ο.ε.δ.
Εγγραφή σε:
Αναρτήσεις (Atom)