Ένας
αριθμός διαιρούμενος με το 3 αφήνει υπόλοιπο 2, διαιρούμενος με το 5 αφήνει
υπόλοιπο 3, και διαιρούμενος με το 7 αφήνει υπόλοιπο 2. Ποιος είναι ο αριθμός;
Σημείωση:
Από το τρίτομο βιβλίο με τίτλο «Κλασσική Αριθμητική του Sun –
Tsu ή Suan – Tse.
Λύση
Είναι ο αριθμός 23. Έστω ότι ο ζητούμενος αριθμός είναι ο Ν. Από τη σειρά των αριθμών 3, 5, και 7 βρίσκουμε το Ε.Κ.Π. τους που είναι:Ε.Κ.Π.( 3,5,7)=3*5*7=105
Βάσει των δεδομένων της εκφώνησης του προβλήματος έχουμε τις εξής εξiσώσεις:
x=3y+2 (1)
x=5z+3 (2)
x=7u+2 (3)
όπου y, z, και u, φυσικοί ακέραιοι αριθμοί.
Ο κανόνας που εφάρμοζαν οι Κινέζοι σ’ αυτή τη περίπτωση, τον οποίο ονόμαζαν Ta-yen,δε διαφέρει κατ’ ουσία από εκείνον ο οποίος εδόθη κατόπιν από τον Gauss (§§ Disq. Aritm. 32-36). Κατ’ εφαρμογή αυτού του κανόνος, προσδιορίζονται (δοκιμαστικώς;) τρεις αριθμοί, «k», «l», και «m», τέτοιοι ώστε να έχουμε:
5*7*k ≡1(mod.3) (4)
7*3*l ≡1(mod.5) (5)
3*5*m ≡1(mod.7) (6)
Αποδεκτές τιμές για τις μεταβλητές «k», «l», και «m» είναι:
«k=2», «l=1», και «m=1»
Αντικαθιστούμε τις τιμές των μεταβλητών στις (4), (5), και (6) κι’ έχουμε:
5*7*2=70 (7)
7*3*1=21 (8)
3*5*1=15 (9)
Πολλαπλασιάζουμε τα αποτελέσματα των ανωτέρω γινομένων με τα υπόλοιπα των διαιρέσεων 2, 3, και 2 κι’ έχουμε:
5*7*2=70*2=140 (10)
7*3*1=21*3=63 (11)
3*5*1=15*2=30 (12)
Προσθέτουμε τα αποτελέσματα των ανωτέρω γινομένων κι’ έχουμε:
140+63+30=233
Από το ανωτέρω άθροισμα αφαιρούμε το Ε.Κ.Π. των διαιρετών 3, 5, και 7, όσες φορές είναι δυνατόν φθάνοντας στο ζητούμενο αριθμό 23, ή πιο σωστά, στο ελάχιστο από αυτά, κι’ έχουμε: 233-105=128-105=23