Ο
Κωνσταντίνος στο μάθημα των Μαθηματικών θα γράψει 4 διαγωνίσματα των 100 μονάδων
το καθένα . Έθεσε ως στόχο του να γράψει στα διαγωνίσματα τουλάχιστον μέσο όρο 95.
Στα δύο πρώτα διαγωνίσματα
έγραψε για 97 μονάδες και 91 μονάδες αντίστοιχα. Όταν είδε το βαθμό του 3ου
διαγωνίσματος κατάλαβε ότι μπορούσε ακόμα να φτάσει το στόχο του. Ποιος θα
μπορούσε να ήταν ο πιο χαμηλός βαθμός του 3ου διαγωνίσματος. (Κατ.34./Νο.707)
Πηγή:Κυπριακή Μαθηματική
Εταιρεία - Επαρχιακός Μαθηματικός Διαγωνισμός (Νοέμβριος 2013)
2 σχόλια:
4*95-97-91-100=92
Αν και είναι από τα εύκολα θέματα ( εφαρμογή μιας σχέσης ή τύπου), και πιθανόν κανείς να μην ενδιαφερθεί, χάριν της ομαλής ροής ανάρτησης θεμάτων θα δώσω μια απάντηση.
Ας είναι Χ ο βαθμός του 3ου διαγωνίσματος.
Για να είναι ο ελάχιστος δυνατός για μέσο όρο >=95, ο βαθμός του 4ου πρέπει να είναι ο μέγιστος δυνατός, δηλαδή 100.
Μέσος όρος 4 διαγωνισμάτων Μ.Ο,
Μ.Ο=(97+91+Χ+100)/4 >=95 ->
Χ>=380-(97+91+100) ->Χ>=380-288 -> Χ>=92.
Άρα 92 ο χαμηλότερος αριθμός του 3ου διαγωνίσματος για μ.ο 95
Δημοσίευση σχολίου