Στον πίνακα είναι γραμμένοι όλοι οι ακέραιοι αριθμοί από το
1 έως το 500.
Δύο μαθητές ο «Α» και ο «Β» παίζουν το εξής παιχνίδι:
«Με τη σειρά διαγράφουν ο ένας μετά τον άλλο από έναν αριθμό. Το
παιχνίδι τελειώνει όταν στον πίνακα απομείνουν δύο αριθμοί.»
Εάν το άθροισμα των αριθμών που απομένουν διαιρείται με το 3, νικητής
είναι ο «Β».
Εάν το άθροισμα των αριθμών που απομένουν δεν διαιρείται με το
3,νικητής είναι ο «Α».
Εάν ο «Α» αρχίσει πρώτος, ο «Β» μπορεί να διμηουργήσει μια στρατηγική
νίκης; (Κατ.3/Νο.27)
Πηγή:Ελληνική Μαθηματική Ολυμπιάδα "Αρχιμήδης 2001"
Πηγή:http://eisatopon.blogspot.gr/2011/04/blog-post_6264.html
Δύο μαθητές ο «Α» και ο «Β» παίζουν το εξής παιχνίδι:
«Με τη σειρά διαγράφουν ο ένας μετά τον άλλο από έναν αριθμό. Το
παιχνίδι τελειώνει όταν στον πίνακα απομείνουν δύο αριθμοί.»
Εάν το άθροισμα των αριθμών που απομένουν διαιρείται με το 3, νικητής
είναι ο «Β».
Εάν το άθροισμα των αριθμών που απομένουν δεν διαιρείται με το
3,νικητής είναι ο «Α».
Εάν ο «Α» αρχίσει πρώτος, ο «Β» μπορεί να διμηουργήσει μια στρατηγική
νίκης; (Κατ.3/Νο.27)
Πηγή:Ελληνική Μαθηματική Ολυμπιάδα "Αρχιμήδης 2001"
Πηγή:http://eisatopon.blogspot.gr/2011/04/blog-post_6264.html