Έναν αριθμό, τον οποίο έχω
ξεχάσει, τον διαίρεσα σε δύο μέρη. Το πρώτο μέρος
το έχω επίσης ξεχάσει, Αλλά το δεύτερο μέρος ήταν ο αριθμός 4 και θυμάμαι
πως εάν το μέρος που έχω ξεχάσει πολλαπλασιαζόταν με τον εαυτό του και
επίσης με το 4, αυτοί οι δύο αριθμοί έχουν άθροισμα 117. Θα ήθελα να ξέρω
ποιος ήταν ο αρχικός αριθμός και ποιο ήταν το πρώτο μέρος του που ξέχασα.
το έχω επίσης ξεχάσει, Αλλά το δεύτερο μέρος ήταν ο αριθμός 4 και θυμάμαι
πως εάν το μέρος που έχω ξεχάσει πολλαπλασιαζόταν με τον εαυτό του και
επίσης με το 4, αυτοί οι δύο αριθμοί έχουν άθροισμα 117. Θα ήθελα να ξέρω
ποιος ήταν ο αρχικός αριθμός και ποιο ήταν το πρώτο μέρος του που ξέχασα.
Πηγή:
Από το βιβλίο του Ουαλού μαθηματικού
Robert Record (1510-1558) με τίτλο:
«The Whetstone of Witte – Το Ακονιστήρι
της Εξυπνάδας ή Για ν’ Ακονίζετε το Μυαλό σας.», 1557
Λύση
Ο αρχικός αριθμός ήταν το 13 και το πρώτο μέρος του που ξέχασα ήταν ο αριθμός 9. Έστω «α» ο αρχικός αριθμός και «x» το πρωτο μέρος που ξέχασα μετά από την διαίρεση του αρχικού αριθμού σε δύο μέρη. Βάσει των δεδομένων της εκφώνησης του προβλήματος έχου τις εξής εξισώσεις:α=x+4 (1)
x^2+4x=117 ----> x^2+4x-117=0 (2)
Βάσει του τύπου x={-β±sqrt[(β^2)-4αγ]/2α της δευτεροβάθμιας εξίσωσης έχουμε:
x={-β±sqrt[(β^2)-4αγ]/2α ----> x=(-4±sqrt[(4^2)-4*1*(-117)]/2*1 ---->
x=(-4±sqrt[16+ 468]/2 ----> x=(-4±sqrt[484]/2 ----> x=(-4±22)/2 ---->
x1= (-4+22)/2 ----> x1=18/2 ----> x1=9 Αποδεκτή. (3)
x2=(-4-22)/2 ----> x2=(-26)/2 ----> x2= -13 Απορρίπτεται.
Αντικαθιστούμε τη (3) στην (1) κι’ έχουμε:
α=x+4 ----> α=9+4=13
Επαλήθευση:
x^2+4x=117 ----> 9^2+4*9=117 ----> 81+36=117 ο.ε.δ.
2 σχόλια:
α=χ+4
χ^2+4χ=117 => χ^2+4χ-117=0 => χ=-2+sqrt(4+117)=-2+sqrt(121)=-2+11=9
α=χ+4=9+4=13
@Ανώνυμος
Συγχαρητήρια! Η απάντησή σας είναι σωστή.
Δημοσίευση σχολίου