Τετάρτη, 10 Αυγούστου 2016

Η Ισορροπία

0σχόλια
Στην ανωτέρω εικόνα, οι δύο ζυγαριές (Σχ.1 και Σχ.2) ισορροπούν. Πόσους κύκλους πρέπει να βάλουμε στο αριστερό τάσι της ζυγαριάς  (Σχ.3), για να ισορροπήσουν τα έξι τετράγωνα; (Κατ.9Β΄)
Πηγη:?
Πηγή:?

Λύση

Κείμενο που θα κρύβεται.

Σάββατο, 23 Ιουλίου 2016

Το Ποσοστό

0σχόλια
Στο ανωτέρω σχήμα τι ποσοστό της επιφάνειας καλύπτει η πράσινη επιφάνεια; (Κατ.34)

Λύση

Το ποσοστό επιφανείας που καλύπτει το πράσινο τμήμα είναι 25%.

Δευτέρα, 11 Ιουλίου 2016

Ο Γαλαξίας

1 σχόλια
O Δανός αστρονόμος, John Hoffen, το 1870, ανακάλυψε έναν νέο γαλαξία κοντά στον γαλαξία της Ανδρομέδας και τον ονόμασε «Μέδουσα»», μια από τις τρεις Γοργόνες της Μυθολογίας, κόρη του Φόρκυ ή Φορκέα και της Κητούς, αδελφή των Γοργόνων Σθενώ και Ευρυάλη, και των Γραιών Δεινώ, Ενυώ και Πεφρηδώ, ήταν στην αρχή Κενταύρισσα, λόγω του σχήματος που είχε. Για την ανακάλυψη αυτή τιμήθηκε από την Ακαδημία της Δανίας μ’ ένα βραβείο που συνοδευόταν από μια επιταγή μ’ έναν εξαψήφιο αριθμό. Το πρώτο ψηφίο του αριθμού ήταν ίδιο με το τέταρτο ψηφίο, το δεύτερο ψηφίο του αριθμού ήταν ίδιο με το πέμπτο ψηφίο και το τρίτο ψηφίο του αριθμού ήταν ίδιο με το έκτο ψηφίο. Το ποσό αυτό ήθελε να το διανείμει στα επτά παιδιά του, τα έντεκα εγγόνια του και τα δεκατρία δισέγγονα του
(α)Ποια είναι η αξία της επιταγής;
(β)Μπορούσε να μοιράσει αυτό το ποσό σε ακέραια ποσά;
(γ)Από πόσα άστρα αποτελείται ο νέος αυτός γαλαξίας;
 Διευκρίνιση για την ερώτηση (γ)
Είναι ένας πρώτος αριθμός και το τελευταίο ψηφίο του είναι ο αριθμός 1. 
Για να δοθεί η λύση να βοηθήσω λίγο. Είναι ένας πρώτος αριθμός και από αποτελείται από διαδοχικά 1 και 0  αρχίζει και τελειώνει σε 1….(Κατ.34)

Λύση

Η αξία της επιταγής ήταν 101.101$. Ναι, μπορεί να μοιράσει την αξία της επιταγής σε ακέραια ποσά. Τα επτά παιδιά του θα πάρουν το καθ’ ένα από 14.443$. Τα έντεκα εγγόνια του θα πάρουν το καθ’ ένα από 1.313$. Και το 13 δισέγγονα του θα πάρουν το καθ’ ένα από 101$. Ο γαλαξίας αποτελείται από 101 άστρα. Έστω «x» η αξία της επιταγής που πήρε ο αστρονόμος John Hoffen, η οποία αξία εξ ορισμού ισούται με «x=αβγαβγ» και είναι της μορφής (10^5α+10^4β+10^3γ+10^2α+10^1β+γ). Βάσει των δεδομένων της εκφώνησης του προβλήματος έχουμε:
10^5α+10^4β+10^3γ+10^2α+10^1β+γ --->
10^5α+10^2α+10^4β+10^1β+10^3γ+ γ--->
10^2α(10^3+1)+10β(10^3+1)+γ(10^3+1)--->
(10^3+1)(10^2α+10β+γ) --->
(10^3+1)(100α+10β+γ) ---> (1.000+1)(αβγ) ---> 1.001αβγ (1)
Μετατρέπουμε τον αριθμό 1.001 σε γινόμενο πρώτων παραγόντων κι’ έχουμε:
1.001=7*11*13
Άρα η (1) γίνεται:
1.001αβγ ---> 7*11*13αβγ (2)
Με διερεύνηση βρίσκουμε ότι το «αβγ» αντιστοιχεί στον πρώτο αριθμό 101.
Για τη διερεύνηση βλέπε εδώ:
https://app.box.com/s/tbygnirml1uljgt2aonw7dgbd7v5h2zn

Σάββατο, 2 Ιουλίου 2016

Η Ισορροπία

5σχόλια
Θέλουμε να ισορροπήσουμε την ανωτέρω ζυγαριά, χρησιμοποιώντας τα τέσσερα αυτά βάρη που είναι από 1kg. έως 40kg. (ακέραιοι αριθμοί). Ποιο είναι το μεγαλύτερο βάρος, με τ' οποίο μπορούμε να ισορροπήσουμε την ζυγαριά;
Διευκρίνιση:
Στο ένα τάσι θα βάλουμε το ένα βάρος και στο άλλο τάσι τα τρία βάρη. (Κατ.34)

Λύση

Το μεγαλύτερο βάρος προκύπτει, εάν βάλουμε στο ένα τάσι το βάρος των 40κιλών και στο άλλο τάσι 3 βάρη, που με διάφορους συνδυασμούς να έχουμε ως αποτέλεσμα 40κιλά. Άρα το μεγαλύτερο βάρος συνολικά είναι 80κιλά.
Π.χ. 1+3+36=40 ---> 40=40 ---> 80Κg.

Κυριακή, 26 Ιουνίου 2016

Το Δημοψήφισμα και Η Ηλικία

4σχόλια
Στην Λοξολάνδη διεξήχθη  δημοψήφισμα για την φίμωση των ροζ παπαγάλων. Στο χωριό Άνω Ραχούλα ψήφισαν «κ» άτομα, όπου «κ» είναι τετραψήφιος αριθμός και παράλληλα τέλειο τετράγωνο, ενώ στο διπλανό χωριό, την Κάτω Ραχούλα, ψήφισαν «λ» άτομα, όπου ο «λ» είναι  επίσης τέλειο τετράγωνο και  προκύπτει  εάν αυξήσουμε τα ψηφία του αριθμού «κ» κατά μια μονάδα.
Πόσοι ψήφισαν σε κάθε χωριό; (Κατ.34)
Ο δήμαρχος  της Άνω Ραχούλας  Μπόρις Καλοχαιρέτας ρωτήθηκε από τους
δημοσιογράφους για το αποτέλεσμα του δημοψηφίσματος και ως συνήθως
απάντησε κάτι άλλο.
-«Να σας πω. Η ηλικία μου είναι ένας πρώτος αριθμός  που όταν διαιρεθεί με την ηλικία του εξάχρονου  εγγονού μου δίνει πηλίκο 14»
Ποια είναι η ηλικία του δήμαρχου Καλοχαιρέτα; (Κατ.34)
Πηγή:http://mathhmagic.blogspot.gr/2016/06/blog-post_25.html

Λύση

(α)Από την Άνω Ραχούλα ψήφισαν 2.025 άτομα και από την Κάτω Ραχούλα ψήφισαν 3.136 άτομα. Εάν κ=α^2 και λ=β^2, τότε από υπόθεση προκύπτει η σχέση: β^2-α^2=1.111 ή (β-α)(β+α)=11*101 Παρατηρούμε ότι οι αριθμοί 11 και 101 είναι πρώτοι αριθμοί και επειδή β-α<β+α διακρίνουμε δυο περιπτώσεις:
(Ι)β-α=1 (1)
β+α=1.111 (2)
(ΙΙ)β-α=11 (1)
β+α=101 (2)
Το σύστημα (Ι) δίνει:
Προσθέτουμε κατά μέλη τις (1) και (2) κι’ έχουμε:
β-α=1
β+α=1.111
2β=1.112 ---> β=1.112/2 ---> β=556 (3)
Αντικαθιστούμε τη (3) στην (1) κι’ έχουμε:
β-α=1 ---> 556-α=1 ---> α=556-1 ---> α=555 (4)
Και τα δύο αποτελέσματα απορρίπτονται καθώς τα τετράγωνα τους έχουν περισσότερα από 4 ψηφία.
Το σύστημα (ΙΙ) δίνει:
Προσθέτουμε κατά μέλη τις (1) και (2) κι’ έχουμε:
β-α=11
β+α=101
2β=112 ---> β=112/2 ---> β=56 (3)
Αντικαθιστούμε τη (3) στην (1) κι’ έχουμε:
β-α=11 ---> 56-α=11 ---> α=56-11 ---> α=45 (4)
Οι λύσεις είναι δεκτές καθώς:
45^2=2.025 και 56^2=3.136
Επαλήθευση:
κ=α^2 ---> κ=45^2 ---> κ=2.025
λ=β^2 ---> λ=56&2 ---> λ=3.136
(Ι)β-α=1 ---> 556-555=1
β+α=1.111 ---> 556+555=1.111
(ΙΙ)β-α=11 ---> 56-45=11
β+α=101 ---> 56+45=101
(β)Ο δήμαρχος είναι 89 ετών. Αν «η» η ηλικία του Καλοχαιρέτα, τότε από υπόθεση προκύπτει, βάσει του τύπου της "Ευκλείδειας Διαίρεσης":
Διαιρετέος=(διαιρέτης*πηλίκο)+υπόλοιπο ---> Δ=(δ*π)+υ, όπου υ<δ
έχουμε:
η=14*6+υ, όπου 0≤υ<δ
Διερεύνηση:
Για υ=0, υ=1, υ=2, υ=3, υ=4 έχουμε:
η=84, η=85, η=86, η=87, και η =88
οι αριθμοί «η» που προκύπτουν δεν είναι πρώτοι αριθμοί.
Για υ=5, έχουμε:
η=(14* 6) +5= 89
Ο αριθμός 89 είναι πρώτος αριθμός.

Κυριακή, 19 Ιουνίου 2016

Οι Τρεις Παρτίδες

2σχόλια
Τρεις παίκτες παίζουν τρεις παρτίδες.
Στη πρώτη παρτίδα ό πρώτος χάνει, τόσα χρήματα, ώστε διπλασιάζει τα χρήματα των δύο άλλων.
Στη δεύτερη παρτίδα ο δεύτερος χάνει τόσα χρήματα, ώστε διπλασιάζει τα χρήματα των δύο άλλων.
Τέλος στη τρίτη παρτίδα ο τρίτος χάνει τόσα χρήματα, ώστε διπλασιάζει τα χρήματα των\ δύο άλλων.
 Στο τέλος του παιχνιδιού ο καθ’ ένας είχε 1.000 δρχ. Να βρείτε πόσα χρήματα
είχε ο καθ’ ένας πριν την έναρξη των παρτίδων. (Κατ.34)
Πηγή:Σχολή Ικάρων 1947

Λύση

Λύση του μαθηματικού Γεωργίου Βούλγαρη.
Έστω ότι ο παίκτης «Α» είχε αρχικά «α» χρήματα, ο παίκτης «Β» είχε αρχικά «β» χρήματα και ο παίκτης «Γ» είχε αρχικά «γ» χρήματα.
Προφανώς ισχύει:
α+β+γ=3.000 (1)
Επειδή στην 3η παρτίδα οι παίκτες «Α» και «Β» διπλασίασαν τα χρήματα τους και ο καθ’ ένας είχε από 1.000δρχ., πριν την 3η παρτίδα είχαν από 500δρχ. ο καθ’ ένας.Άρα ο παίκτης «Γ» έχασε στην 3η παρτίδα: 500+500=1.000δρχ. Και αφού του έμειναν και 1.000δρχ. ακόμα, σημαίνει ότι πριν την 3η παρτίδα είχε 2.000δρχ. Στο ποσό αυτό ο «Γ» έφτασε διπλασιάζοντας το αρχικό ποσό δυο φορές, οπότε αρχικά ξεκίνησε με 500δρχ. Δηλαδή (γ=500). Ο παίκτης «Α», τώρα, μετά την πρώτη παρτίδα διπλασίασε δυο φορές τα χρήματα του και έφτασε τις 1.000δρχ. Άρα μετά την πρώτη παρτίδα του είχαν απομείνει 250δρχ. Δηλαδή από το αρχικό ποσό, αφαιρούμε τα ποσά των χρημάτων «β» και «γ» (αυτά που έχασε) και προκύπτουν 250δρχ.Δηλαδη:
α-(β+γ)=1.000-(250+500)=1.000-750=250 (2)
Προσθέσουμε κατά μέλη τις (1) και (2) κι’ έχουμε:
α+β+γ=3.000
α-β-γ=250
2α=3.250 ---> α=3.250/2 ---> α=1.625
Αντικαθιστούμε τις τιμές «α» και «γ» στην (1) κι’ έχουμε:
α+β+γ=3.000 ---> 1.625+β+500=3.000 ---> β=3.000-1.625-500 ---> β=3.000-2.125---> β= 875
Επαλήθευση:
α+β+γ=3.000 ---> 1.625+875+500=3.000

Τετάρτη, 8 Ιουνίου 2016

Πάσχα 2016!!

2σχόλια
Ανάσταση του Κ.Η.Ι.Χ και  Πρωτομαγιά 2016
*      Ελληνικά: "Χριστός Ανέστη!"
*      Λατινικά: "Christus resurrexit! Resurrexit vere!"
*      Ιταλικά: "Gesù Cristo è risorto! È veramente risorto!"
*      Αγγλικά: "Christ is Risen! Truly He is Risen!" or
*      Αγγλικά:"Christ is Risen! He is Risen indeed!"
*      Γαλλικά: "Le Christ est ressuscité! Il est vraiment ressuscité!"
 * * * * * * * * * 
Χριστός Ανέστη! Η ιστοσελίδα «Papaveri1948” εύχεται σε όλους Χρόνια Πολλά!, και Καλό Μήνα.  Είθε, ο Αναστημένος Χριστός να μας βοηθήσει να ξεπεράσουμε την οικονομική κρίση, στην οποία έχουμε περιέλθει, και να ζήσουμε καλύτερες ημέρες!
 

Papaveri48 © 2010

PSD to Blogger Templates by OOruc & PSDTheme by PSDThemes